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The LAGEOS Mission

¢ LAGEOS was designhed and launched with
geodynamics as the primary objective:

“A satellite which looks like a giant golf ball will be launched by
NASA next month into a 5,900-kilometer (3,600-mile) high orbit to
serve as a tool for obtaining information on Earth's crustal
movements, polar motion, solid Earth tides and precise locations
of various spots on Earth. “ [NASA Press Kit, RELEASE NO: 76-67]

¢ Space Geodesy had just completed a successful 10-yr global
program, the “National Geodetic Satellite Program (NGSP)
1964-1974”, and everyone wanted a lot more of what had
been accomplished through that and at higher accuracy:

Global station coordinates at +10 m, gravity models to (15,15), most
national datums linked to a geocentric frame, etc.
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Mission Objectives

& LAGEOQOS is the first NASA satellite dedicated
exclusively to laser ranging;

¢ The LAGEOS orbit was intended to be the stable
reference to monitor :

the motion of tectonic plates,
the time-varying behavior of the Earth's polar positions,
the maintenance of geodetic reference systemes,
the more accurate determination of universal time
¢ Ultimately, the intension was “to contribute to development of

an understanding of earthquakes, their origin and the ability to

forecast their occurrence.”

L.
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Pre-launch LAGEOS Requirements

MEASUREMENT REQUIREMENTS SUMMARY"

*). W. Siry : The LAGEOS System NASA TM X-73072

MEASUREMENT ACCURACY
e CRUSTAL MOTION 1.cm / year

e POLAR MOTION, EARTH ROTATION 2 cm / 0.5 day
e SATELLITE ORBITS 10 cm

e GRAVITY FIELD / GEOID 10 cm

e SEA SURFACE TOPOGRAPHY 10 cm

e SEA STATE / WAVE HEIGHT 1-3m

e SURFACE WINDS 2-5 m/s

e MAGNETIC FIELD 2 gamma, 0.5 arc min

e
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Polar Motion & LOD from LAGEQOS
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¢ The full MERIT
campaign in 1983-84
completed
successfully and
demonstrated the
central role of
LAGEOQS as the new
satellite tool for
Space Geodesy

¢ NASA’s Crustal
Dynamics Project
(CDP) is launched in
1979 and as it turned
out, LAGEOS took
again center stage
for satellite
techniques

NASA Network and international partner sites (ca. 1984)

Meteahovi, Finland
Kootwijk, The Netherlands

W COP SATELLITE LASER RANGING STATIONS

[J FOREIGN BATELLITE LASER RANGING STATIONS
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Inclusion of LAGEOS data in the
data set used to produce the
Goddard Earth Model 9 (GEM-9)
resulted in an improved model
with higher resolution used for
several years as the best mode

for Precise Orbit Determination
(POD).

As LAGEOS data accumulated
new models followed, primarily
as part of the TOPEX/POSEIDON
pre-launch model development,
models GEM-T1, -T2, -T3 and
JGM-3 from Univ. of Texas/CSR.
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The path of the rotation axis of the Earth as determined from laser
ranging observations to LAGEOS during the interval from 1976 to
1988. The variable amplitude of the path is mainly due to the
beating of the two primary frequencies involved: the annual and
the Chandler (1.2 years).
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The variation in the spin rate of Earth observed from laser ranging to LAGEOS. The large periodic
signature is caused by lunisolar tides, the higher frequencies are the result of exchange of
angular momentum with the atmosphere. Notice the effect of the 1983 El Nifio.
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After the correction of
the geologic time
scale, LAGEOS-derived
tectonic motions
agreed with those
predicted by geologic
models with a
correlation of 99.7 %

Slope = 0.966 +0.009

10 Correlation = 0.997

50 T

Space Geodetic Relative Rates (mm/yr)

Based on an analysis of 107 lines between
SLR and VLBl sites located deep within plate interiors.
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NUVEL-1 Relative Rates (mm/yr)
Correlation of geodesic rates determined from space geodetic techniques compared

with the NUVEL-1 Geologic Model for VLBI and SLR tracking sites centrally located on
major plates.
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Quarterly Variations of Geocenter

Rigid Body Transformation Parameters

Quarterly to Global Solutions
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Scientific Results by 1985

¢ Plate tectonics checked at a
global and regional scale LAGEOS

o Earth orientation monitored ~ Ocientific Results
at a 3-day resolution and
Earth rotation variations’
correlation with AAM
demonstrated over years,
including the detection of

ENSO events (1983)
¢ GM accurately measured
‘ GraVity mOdE| improvements Reprinted from Journal of Geophysical Research

Volume 90, Number B11, September 30, 1985

at I O n g Wa Ve I e n gt h S (G E M - Lz ) Published by the American Geophysical Union
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¢ Launched in late 1979, i A
Contributions of Space Geodesy

spanned over a decade and to Geodynamic:
LAGEQOS held a central role as Crustal Dynamics
the SLR primary target

David E. Smith
Donaid L. Turcotte

¢ CDP created an international Editors
community focused on
solving geodynamics
problems with space geodesy

¢ The numerous scientific
results were compiled in a 3-
volume publication of the Geodynamics Series  Volume 23
AGU

L.
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¢ One of the outcomes of the main MERIT campaign was
the establishment of a new “Service” to coordinate such
activities in a routine fashion and provide the
community with results adhering to established
standards (an outgrowth of the “MERIT Standards”)

¢ This led to the establishment of the IERS (/International
Earth Rotation Service) in 1987, starting its operations
on Jan. 1, 1988, and later renamed (2003) to:

International Earth Rotation and Reference Systems
Service

¢ Eventually, all space geodetic techniques were organized
in a similar fashion, with an international participation

Erricos C. Pavlis, May 11, 2016 40th Anniversary of LAGEOS Launch, Goddard SFC 18



¢ When IERS was established LAGEOS had already proven
itself as the pillar of the global network’s station

coordinate estimation tool during the various projects
(MERIT, CDP, WEGENER/MEDLAS, etc.) and a main
contributor to gravity modeling efforts

¢ Soon after, in 1992 a second spacecraft with identical
design, LAGEOS-2, was launched as a joint project of
NASA and ASI, the Italian Space Agency

¢ |ERS identified the two as the unique contributors to the
definition of the origin of the ITRF (International
Terrestrial Reference Frame) and along with Very Long
Baseline Interferometry (VLBI), the scale of the ITRF

L
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Contribution to ITRF

¢ Analysis of LAGEOS and LAGEOS-2 SLR data have contributed
to the all ITRF realizations of the ITRS

¢ In recent years the analysis delivers weekly estimates of the
coordinates of the stations and daily-averaged EOP, updated
on a daily basis

¢ When a new ITRF model is to be realized, a complete
reanalysis of the SLR data to the two LAGEOS s/c is
performed, using the latest models for gravity, tides, etc.

¢ The quality of the ILRS analysis products is continuously
monitored and discrepancies with respect to various
parameters (e.g. ITRF scale) are investigated

¢ Since several years, ILRS is focused on mitigating the effect of
systematic errors in the data, and the two LAGEOS s/c data
are the main standards against which all stations are
compared and evaluated

.
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ITRF2014 Networks

ITRF2014 sites

ITRS, Z. Altamini
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ITRF2014 Velocities

- ITRS, Z. Altamini
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SLR, DORIS & VLBI scales wrt ITRF2014

ITRF2014 Scale defined as the mean of SLR and VLBI scales

Scale factors of SLR and VLBI solutions
Full time series of scale factors selected to define ITRF2014 scale

50 Scale ch.tors (mm) WRT ITRF2014 (s.eas_onal signals removed) ITRF2014 scale: average of selcted Vi Bl and SLR scales (Seagonal signals removed)
45 — O'. * R n. * * * 2

T

I I [ [ I .I I [ [ [ I I I I I
1980 1985 1990 1995 2000 2005 2010 20151980 1985 1990 1995 2000 2005 2010 2015

SLR-VLBI Scale difference SLR VLBI

VLBI & SLR co- 9 sites (good distribution):
locations, No GPS 1.37 £0.26 ppb 13 LT vectors, properly weighted

ITRS, Z. Altamini
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Site Coordinate Residuals — Statistics
ITRF2014 & PSD

vs SLRF2008 vs ITRF2014 ITRF2014+PSD
STD STD
Mean WRMS Mean WRMS Mean STD
hans | tmed | WRNS | Gmep | WRMS | wRe
All Sites 9.7 6.2 9.0 6.5 7.7 5.4
Core Sites 6.5 4.9 6.0 4.3 6.0 4.8

The performance of the new TRF model looks very good,
even at this very preliminary stage of implementation

E. C. Pavlis 12/13/2015 IERS DB #61 San Francisco, CA 25 .



¢ The current major task that LAGEOS data contribute to is
monitoring the quality of the network data on a daily
basis

¢ Engineers cannot detect small errors below the 1-2 cm
level, orbital fitting to global solutions are necessary

¢ Today’s accuracy requirements make errors of even a
few millimeters a major issue

¢ The Quality Control (QC) of the ILRS data is one of the
areas where LAGEOS data is now playing a central role

¢ The ILRS has established a Quality Control Board to
oversee these efforts on a routine basis

Erricos C. Pavlis, May 11, 2016 40th Anniversary of LAGEOS Launch, Goddard SFC 26



Systematic Errors at Zimmerwald
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Long-term stability [mm]
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¢ The important role of an
accurate correction of
the data for the effective
reflection plane of the
laser pulse was
demonstrated with the
improvement of the GM
estimate from LAGEQOS
data, once this offset was
corrected from 240 mm
to 251 mm

Ries, J.C., R.J. Eanes, C.K. Shum
and M.M. Watkins,(1992):
Progress in the determination of
the gravitational coefficient of
the Earth

Graham Appleby & Toshi Otsubo

M _LAGEOS Centre-of-mass correction
Otsubo & Appleby, JGR, 2003

0.24 (m)
] 1 1 ] 1 1 | 1 |

B Diameter 600 mm

257.6 “r - nL.” 251 “Standard”
< Range bias “-"; Satellite looks Satellite looks smaller; Range bias
Single . , larger | | + D>
Photon A A A A\
250 247 245 242
2-sigma 2.5-sigma 3-sigma  wl/o clipping
C-SPAD‘ 1 I ] 1 | I 1 1 I 1 1 |
257 256 249 245

100 p.e. 10 p.e. 1 p.e. Ideal S.P. (<0.1 p.e.)
PMT 1 1 1 | 1 1 1 |
(LEHM) A A A A A

256
1 ps

252
100 ps

A complete reevaluation of the various systems
deployed in the global network resulted in a set of
individual corrections applicable for each site and
mode of operation, limiting the error from this
source to about £ 2 mm on average.
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LAGEOS Contributions Beyond Geodesy
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Figure 1.1. The Lageos-l/Lageos-3 mission; the Lense-Thirring precession is
identical for both satellites, whereas the classical precession due
to the Earth's oblateness is equal and opposite.

SIMULATION OF AN EXPERIMENT TO MEASURE
THE LENSE-THIRRING PRECESSION USING

CSR-89-5

A SECOND LAGEOS SATELLITE
by

John C. Ries December 1989
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Abstract We present a test of general relativity, the mea-
surement of the Earth’s dragging of inertial frames. Our result
is obtained using about 3.5 years of laser-ranged observations
of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satel-
lites together with the Earth gravity field model GGMOS5S
produced by the space geodesy mission GRACE. We mea-
sure u = (0.994 = 0.002) =+ 0.05, where p is the Earth’s
dragging of inertial frames normalized to its general rela-
tivity value, 0.002 is the 1-sigma formal error and 0.05 is
our preliminary estimate of systematic error mainly due to
the uncertainties in the Earth gravity model GGMOSS. Our
resultis in agreement with the prediction of general relativity.

1 Introduction

About 100 years ago Albert Einstein completed the publica-
tion of a series of fundamental papers describing the gravita-
tional theory known as general relativity (GR) [1-7]. Since
then Einstein’s gravitational theory has had experimental and
theoretical triumphs, including the prediction and observa-
tion of the expansion of the universe, of black holes, gravita-
tional lensing and gravitational waves [8-14]. GR has today
a number of practical applications to our everyday life [15]
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including its corrections that enable the Global Navigation
Satellite System to reach accuracies at the level of a few
decimetres [16].

Nevertheless, GR has not been reconciled with the other
fundamental theory of modern physics: quantum mechanics.
Further, Einstein’s gravitational theory predicts the occur-
rence of spacetime singularities where every known physical
theory ceases to be valid, the spacetime curvature diverges
and time ends [17]. In 1998 observations of distant super-
novae of type Ia implied the quite surprising result that the
universe has an accelerated expansion [18,19]. An explana-
tion for this mysterious result can be found in the cosmo-
logical constant introduced by Einstein to avoid a dynamical
universe and later, in 1931, abandoned by Einstein himself.
However, the cosmological constant corresponds to vacuum
energy and quantum field theory predicts that the vacuum
energy should have a value approximately 10'22 times larger
than the dark energy [20,21] density that is observed in the
universe. To explain the accelerated expansion of the uni-
verse, dark energy should compose more than 70 % of our
universe, but its real nature is unknown. Other explanations
include a time dependent vacuum energy with the exotic
name of quintessence, and modifications of GR such as the
so-called f(R) theories. Therefore, in spite of its experimen-
tal triumphs, Einstein’s gravitational theory continues to need
further accurate tests at all scales from solar system tests to
astrophysical and cosmological observations.

@ Springer
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Fig. 4 Fit of the cumulative combined nodal residuals of LARES,
LAGEOS, and LAGEOS 2 with a linear regression plus six periodi-
cal terms corresponding to six main tidal perturbations observed in the
orbital residuals
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Conclusion

¢ LAGEOS was launched to address a handful of problems that were
of high interest in the 70s, but it has proven an unfathomable tool
for addressing incredibly complicated problems and we are still
finding areas where the data will significant contributions

¢ For Geodesy, the contributions of the two LAGEOS s/c to the
development of the ITRF models and the subsequent monitoring
of its quality are unique, since they are the only tool that we have
to define its origin and monitor its variations

¢ The addition of a new s/c to the current constellation, LARES and
the possible future augmentation with a LARES-2, will enhance the
qguality and accuracy of the products since the new targets are
specifically designed for millimeter accurate Geodesy

L.
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Short & Long-term System Stability
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Short & Long-term System Stability
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